Problem 1.30

Calculate the surface integral of the function in Ex. 1.7, over the bottom of the box. For consistency, let "upward" be the positive direction. Does the surface integral depend only on the boundary line for this function? What is the total flux over the closed surface of the box (including the bottom)? [Note: For the closed surface, the positive direction is "outward," and hence "down," for the bottom face.]

Solution

The box of interest here is shown below.

Let

$$
\mathbf{v}=2 x z \hat{\mathbf{x}}+(x+2) \hat{\mathbf{y}}+y\left(z^{2}-3\right) \hat{\mathbf{z}}
$$

and calculate the integral of \mathbf{v} over each of the faces.

$$
\begin{aligned}
& \iint_{\text {face (i) }} \mathbf{v} \cdot d \mathbf{a}=\left.\int_{0}^{2} \int_{0}^{2} \mathbf{v} \cdot(\hat{\mathbf{x}} d y d z)\right|_{x=2}=\left.\int_{0}^{2} \int_{0}^{2} v_{x}\right|_{x=2} d y d z=\int_{0}^{2} \int_{0}^{2} 2(2) z d y d z=16 \\
& \iint_{\text {face (ii) }} \mathbf{v} \cdot d \mathbf{a}=\left.\int_{0}^{2} \int_{0}^{2} \mathbf{v} \cdot(-\hat{\mathbf{x}} d y d z)\right|_{x=0}=-\left.\int_{0}^{2} \int_{0}^{2} v_{x}\right|_{x=0} d y d z=-\int_{0}^{2} \int_{0}^{2} 2(0) z d y d z=0 \\
& \iint_{\text {face (iii) }} \mathbf{v} \cdot d \mathbf{a}=\left.\int_{0}^{2} \int_{0}^{2} \mathbf{v} \cdot(\hat{\mathbf{y}} d x d z)\right|_{y=2}=\left.\int_{0}^{2} \int_{0}^{2} v_{y}\right|_{y=2} d x d z=\int_{0}^{2} \int_{0}^{2}(x+2) d x d z=12 \\
& \iint_{\text {face (iv) }} \mathbf{v} \cdot d \mathbf{a}=\left.\int_{0}^{2} \int_{0}^{2} \mathbf{v} \cdot(-\hat{\mathbf{y}} d x d z)\right|_{y=0}=-\left.\int_{0}^{2} \int_{0}^{2} v_{y}\right|_{y=0} d x d z=-\int_{0}^{2} \int_{0}^{2}(x+2) d x d z=-12
\end{aligned}
$$

$$
\iint_{\text {face (v) }} \mathbf{v} \cdot d \mathbf{a}=\left.\int_{0}^{2} \int_{0}^{2} \mathbf{v} \cdot(\hat{\mathbf{z}} d x d y)\right|_{z=2}=\left.\int_{0}^{2} \int_{0}^{2} v_{z}\right|_{z=2} d x d y=\int_{0}^{2} \int_{0}^{2} y(1) d x d y=4
$$

$$
\iint_{\text {face (vi) }} \mathbf{v} \cdot d \mathbf{a}=\left.\int_{0}^{2} \int_{0}^{2} \mathbf{v} \cdot(-\hat{\mathbf{z}} d x d y)\right|_{z=0}=-\left.\int_{0}^{2} \int_{0}^{2} v_{z}\right|_{z=0} d x d y=-\int_{0}^{2} \int_{0}^{2} y(-3) d x d y=12
$$

Therefore, the closed surface integral of \mathbf{v} over the box is

$$
\begin{aligned}
\oiint \oiint_{\text {box }} \mathbf{v} \cdot d \mathbf{a} & =\iint_{\text {face (i) }} \mathbf{v} \cdot d \mathbf{a}+\iint_{\text {face (ii) }} \mathbf{v} \cdot d \mathbf{a}+\iint_{\text {face (iii) }} \mathbf{v} \cdot d \mathbf{a}+\iint_{\text {face (iv) }} \mathbf{v} \cdot d \mathbf{a}+\iint_{\text {face (v) }} \mathbf{v} \cdot d \mathbf{a}+\iint_{\text {face (vi) }} \mathbf{v} \cdot d \mathbf{a} \\
& =16+0+12-12+4+12 \\
& =32 .
\end{aligned}
$$

Because it's nonzero, the integral of \mathbf{v} over the bottom face does not only depend on the boundary line; the surface being integrated over also matters. This conclusion could have been reached more quickly from the fact that the divergence of \mathbf{v} is nonzero.

$$
\begin{aligned}
\nabla \cdot \mathbf{v} & =\frac{\partial}{\partial x}(2 x z)+\frac{\partial}{\partial y}(x+2)+\frac{\partial}{\partial z}\left[y\left(z^{2}-3\right)\right] \\
& =2 z+0+2 y z \\
& =2 z(1+y)
\end{aligned}
$$

Observe that the volume integral of $\nabla \cdot \mathbf{v}$ over the box gives the same result, verifying Gauss's theorem.

$$
\begin{aligned}
\iiint_{\text {box }} \nabla \cdot \mathbf{v} d V & =\int_{0}^{2} \int_{0}^{2} \int_{0}^{2} 2 z(1+y) d x d y d z \\
& =2\left(\int_{0}^{2} d x\right)\left[\int_{0}^{2}(1+y) d y\right]\left(\int_{0}^{2} z d z\right) \\
& =2(2)(4)(2) \\
& =32
\end{aligned}
$$

